Setting Up Your MultiHop Network

To set up and install your wireless MultiHop network, follow these steps:

1. If your radios have DIP switches, configure the DIP switches of all devices.

Datasheet

Sure Cross® MultiHop embeddable board devices provide connectivity where traditional wired connections are not possible or are cost prohibitive.

- Wireless industrial module with two PNP discrete inputs, two PNP discrete outputs, two 0 to 20 mA analog inputs, and two 0 to 20 mA analog outputs
- Selectable transmit power levels of 250 mW or 1 Watt for 900 MHz models and 65 mW for 2.4 GHz models
- 10 V DC to 30 V DC power input
- Self-healing, auto-routing RF network with multiple hops extends the network’s range
- Serial and I/O communication on a Modbus platform
- Message routing improves link performance
- DIP switches select operational modes: master, repeater, or slave
- Frequency Hopping Spread Spectrum (FHSS) technology ensures reliable data delivery within the unlicensed Industrial, Scientific, and Medical (ISM) band

Important: Please download the complete Sure Cross® MultiHop Data Radio technical documentation, available in multiple languages, from www.bannerengineering.com for details on the proper use, applications, Warnings, and installation instructions of this device.

Important: Por favor descargue desde www.bannerengineering.com toda la documentación técnica de los Sure Cross® MultiHop Data Radio, disponibles en múltiples idiomas, para detalles del uso adecuado, aplicaciones, advertencias, y las instrucciones de instalación de estos dispositivos.

Important: Veuillez télécharger la documentation technique complète des Sure Cross® MultiHop Data Radio sur notre site www.bannerengineering.com pour les détails sur leur utilisation correcte, les applications, les notes de sécurité et les instructions de montage.

WARNING:

- Do not use this device for personnel protection
- Using this device for personnel protection could result in serious injury or death.
- This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A device failure or malfunction can cause either an energized (on) or de-energized (off) output condition.

Important:

- Electrostatic discharge (ESD) sensitive device
- ESD can damage the device. Damage from inappropriate handling is not covered by warranty.
- Use proper handling procedures to prevent ESD damage. Proper handling procedures include leaving devices in their anti-static packaging until ready for use; wearing anti-static wrist straps; and assembling units on a grounded, static-dissipative surface.

Important:

- Never operate a 1 Watt radio without connecting an antenna
- Operating 1 Watt radios without an antenna connected will damage the radio circuitry.
- To avoid damaging the radio circuitry, never apply power to a Sure Cross® Performance or Sure Cross MultiHop (1 Watt) radio without an antenna connected.

Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Antenna Connection</th>
<th>Frequency</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX80DRM-HB2</td>
<td>Ext. Reverse Polarity SMA, 50 Ohms</td>
<td>900 MHz ISM Band</td>
<td>Inputs: Two PNP discrete, two 0 to 20 mA analog</td>
</tr>
<tr>
<td>DX80DRM-HB2-KR</td>
<td></td>
<td>2.4 GHz ISM Band</td>
<td>Outputs: Two PNP discrete, two 0 to 20 mA analog</td>
</tr>
<tr>
<td>DX80DRMU-HB2</td>
<td>U.FL-R-SMT.(01)</td>
<td>900 MHz ISM Band</td>
<td></td>
</tr>
<tr>
<td>DX80DRMU-QB3</td>
<td></td>
<td>2.4 GHz ISM Band</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Instructions

To set up and install your wireless MultiHop network, follow these steps:

1. If your radios have DIP switches, configure the DIP switches of all devices.
2. Connect the sensors to the MultiHop radios if applicable.
3. Apply power to all devices.
4. If your MultiHop radio has rotary dials, set the MultiHop Radio (Slave) ID. If your MultiHop radio has no rotary dials, continue to the next step.
5. Form the wireless network by binding the slave and repeater radios to the master radio. If the binding instructions are not included in this datasheet, refer to the quick start guide or product manual.
6. Observe the LED behavior to verify the devices are communicating with each other.
7. Configure any I/O points to use the sensors connected to the Sure Cross devices.
8. Conduct a site survey between the MultiHop radios. If the site survey instructions are not included in this datasheet, refer to the product manual.
9. Install your wireless sensor network components. If the installation instructions are not included in this datasheet, refer to the product manual.

For additional information, refer to one of the following documents:
- MultiHop Data Radio Quick Start Guide: 152653
- MultiHop Data Radio Instruction Manual: 151317
- MultiHop Register Guide: 155289

Configure the DIP Switches
Before changing DIP switch positions, disconnect the power. Any changes made to the DIP switches are not recognized until after power is cycled to the device.

DIP Switch Settings (MultiHop)

<table>
<thead>
<tr>
<th>Device Settings</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial line baud rate 19200 OR User defined receiver slots</td>
<td>OFF¹</td>
<td>OFF¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial line baud rate 38400 OR 32 receiver slots</td>
<td>OFF</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial line baud rate 9600 OR 128 receiver slots</td>
<td>ON</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial line baud rate Custom OR 4 receiver slots</td>
<td>OFF²</td>
<td>ON²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity: None</td>
<td>OFF¹</td>
<td>OFF¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity: Even</td>
<td>OFF</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity: Odd</td>
<td>ON</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disable serial (low power mode) and enable the receiver slots select for switches 1-2</td>
<td>ON²</td>
<td>ON²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmisst power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 MHz radios: 1.00 Watt (30 dBm)</td>
<td>OFF¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 GHz radios: 0.065 Watts (16 dBm) and 60 ms frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmisst power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 MHz radios: 0.25 Watts (24 dBm)</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 GHz radios: 0.065 Watts (18 dBm) and 40 ms frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application mode: Modbus</td>
<td>OFF¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application mode: Transparent</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiHop radio setting: Repeater</td>
<td>OFF¹</td>
<td>OFF¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiHop radio setting: Master</td>
<td>OFF</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiHop radio setting: Slave</td>
<td>ON²</td>
<td>OFF²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiHop radio setting: Reserved</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Default configuration
² Default configuration for the E housing models only

Application Mode
The MultiHop radio operates in either Modbus mode or transparent mode. Use the internal DIP switches to select the mode of operation. All MultiHop radios within a wireless network must be in the same mode.

Modbus mode uses the Modbus protocol for routing packets. In Modbus mode, a routing table is stored in each parent device to optimize the radio traffic. This allows for point to point communication in a multiple data radio network and acknowledgement/retry of radio packets. To access a radio’s I/O, the radios must be running in Modbus mode.

In transparent mode, all incoming packets are stored, then broadcast to all connected data radios. The data communication is packet based and not specific to any protocol. The application layer is responsible for data integrity. For one to one data radios it is possible to enable broadcast acknowledgement of the data packets to provide better throughput. In transparent mode, there is no access to the radio’s I/O.

Baud Rate and Parity
The baud rate (bits per second) is the data transmission rate between the device and whatever it is physically wired to. Set the parity to match the parity of the device you are wired to.

Disable Serial
Disable an unused local serial connection to reduce the power consumption of a data radio powered from the solar assembly or from batteries. All radio communications remain operational.

Receiver Slots
The number of receiver slots indicates the number of times out of 128 slots/frames the radio can transmit to its parent radio. Setting a slave’s receiver slots to four reduces the total power consumption by establishing that the slave can only transmit to its parent four times per 128 slots.
Transmit Power Levels/Frame Size
The 900 MHz data radios can be operated at 1 watt (30 dBm) or 0.250 watt (24 dBm). For most models, the default transmit power is 1 watt.

For 2.4 GHz radios, the transmit power is fixed at 0.065 watt (18 dBm) and DIP switch 5 is used to set the frame timing. The default position (OFF) sets the frame timing to 60 milliseconds. To increase throughput, set the frame timing to 40 milliseconds.

Important: Prior to date code 15341 and radio firmware version 3.6, the frame timing was 40 ms (OFF) or 20 ms (ON).

Wiring Diagrams
Refer to the Class I Division 2/Zone 2 control drawings (p/n 143086) for wiring specifications and limitations.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog IN 1 (0 to 20 mA)</td>
<td>A11</td>
</tr>
<tr>
<td>2</td>
<td>Analog IN 2 (0 to 20 mA)</td>
<td>A12</td>
</tr>
<tr>
<td>3</td>
<td>Discrete IN 3 (PNP)</td>
<td>DI3</td>
</tr>
<tr>
<td>4</td>
<td>Discrete IN 4 (PNP)</td>
<td>DI4</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>Discrete OUT 1 (PNP)</td>
<td>DO1</td>
</tr>
<tr>
<td>7</td>
<td>Discrete OUT 2 (PNP)</td>
<td>DO2</td>
</tr>
<tr>
<td>8</td>
<td>Analog OUT 1 (0 to 20 mA)</td>
<td>AO1</td>
</tr>
<tr>
<td>9</td>
<td>Analog OUT 2 (0 to 20 mA)</td>
<td>AO2</td>
</tr>
<tr>
<td>10</td>
<td>RS-485 + Host communication connection</td>
<td>485+</td>
</tr>
<tr>
<td>11</td>
<td>RS-485 – Host communication connection</td>
<td>485-</td>
</tr>
<tr>
<td>12</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>10 to 30 V DC</td>
<td>PWR</td>
</tr>
<tr>
<td>14</td>
<td>Not used</td>
<td>-</td>
</tr>
</tbody>
</table>

Set the MultiHop Radio (Slave) ID
The slave ID is an identifying number used for devices within a Modbus system. When using more than one Modbus slave, assign each slave a unique ID number.

For MultiHop radios with rotary dials, use the rotary dials to set the device’s MultiHop Radio ID. The left dial sets the left digit and the right dial sets the right digit.

- Modbus Slave IDs 01 through 10—Reserved for slaves directly connected to the host (local I/O). Polling messages addressed to these devices are not relayed over the wireless link.
- Modbus Slave IDs 11 through 60—Use for MultiHop master, repeater, and slave radios. Up to 50 devices (local slaves and remote slaves) may be used in this system.
If your MultiHop radio does not have rotary dials, you must use the master radio to set the Slave ID during the binding process.

Bind a MultiHop Radio (with Rotary Dials)

To create your MultiHop network, bind the repeater and slave radios to the designated master radio.

Before binding your radio, verify you have used the radio's rotary dials to assign a unique slave ID to the radio.

1. Apply power to all MultiHop radios and place the MultiHop radios configured as slaves or repeaters at least two meters away from the master radio.
2. Put the MultiHop master radio into binding mode.
 - For two button master radios, triple-click button 2.
 - For one button master radios, triple-click the button.

 For the two LED/button models, both LEDs flash red and the LCD shows *BINDNG and *MASTER. For single LED/button models, the LED flashes alternatively red and green.
3. Put the MultiHop repeater or slave radio into binding mode.
 - For two button radios, triple-click button 2.
 - For one button radios, triple-click the button.

 The child radio enters binding mode and searches for any Master radio in binding mode. While searching for the Master radio, the two red LEDs flash alternately. When the child radio finds the Master radio and is bound, both red LEDs are solid for four seconds, then both red LEDs flash simultaneously four times. For M-GAGE Nodes, both colors of the single LED are solid (looks orange), then flash. After the slave/repeater receives the binding code transmitted by the master, the slave and repeater radios automatically exit binding mode.
4. Repeat step 3 for as many slave or repeater radios as are needed for your network.
5. When all MultiHop radios are bound, exit binding mode on the master.
 - For two button master radios, double-click button 2.
 - For one button master radios, double-click the button.

 All radio devices begin to form the network after the master data radio exits binding mode.

Child Radios Synchronize to the Parent Radios

The synchronization process enables a Sure Cross® radio to join a wireless network formed by a master radio. After power-up, synchronization may take a few minutes to complete. First, all radios within range of the master data radio wirelessly synchronize to the master radio. These radios may be slave radios or repeater radios.

After repeater radios are synchronized to the master radio, any radios that are not in sync with the master but can "hear" the repeater radio will synchronize to the repeater radios. Each repeater "family" that forms a wireless network path creates another layer of synchronization process. The table below details the process of synchronization with a parent. When testing the devices before installation, verify the radio devices are at least two meters apart or the communications may fail.

Slave and Repeater LED Behavior

All bound radios set to slave or repeater modes follow this LED behavior after powering up.

<table>
<thead>
<tr>
<th>Process Steps</th>
<th>Response</th>
<th>Two Button/LED Models</th>
<th>Single Button/LED Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LED 1</td>
<td>LED 2</td>
</tr>
<tr>
<td>1</td>
<td>Power is supplied to the radio.</td>
<td>-</td>
<td>Solid amber (briefly)</td>
</tr>
<tr>
<td>2</td>
<td>The slave/repeater searches for a parent device.</td>
<td>Flashes red</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>A parent device is detected. The slave/repeater searches for other parent radios within range.</td>
<td>Solid red</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>The slave/repeater selects a suitable parent.</td>
<td>-</td>
<td>Solid amber</td>
</tr>
<tr>
<td>5</td>
<td>The slave/repeater attempts to synchronize to the selected parent.</td>
<td>-</td>
<td>Solid red</td>
</tr>
<tr>
<td>6</td>
<td>The slave/repeater is synchronized to the parent.</td>
<td>Flashes green</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>The slave/repeater enters RUN mode.</td>
<td>Solid green, then flashes green</td>
<td>-</td>
</tr>
</tbody>
</table>

Serial data packets begin transmitting between the slave/repeater and its parent radio.

<table>
<thead>
<tr>
<th>Process Steps</th>
<th>Response</th>
<th>Two Button/LED Models</th>
<th>Single Button/LED Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LED 1</td>
<td>LED 2</td>
</tr>
<tr>
<td>1</td>
<td>Power is supplied to the master radio</td>
<td>-</td>
<td>Solid amber</td>
</tr>
<tr>
<td>2</td>
<td>The master radio enters RUN mode.</td>
<td>Flashes green</td>
<td>-</td>
</tr>
</tbody>
</table>

Serial data packets begin transmitting between the master and its children radios.

Master LED Behavior

All bound radios set to operate as masters follow this LED behavior after powering up.
MultiHop Configuration Software

Use Banner’s MultiHop Configuration Software to view your MultiHop radio network and configure the radio and its I/O.

The software connects to a MultiHop master radio using one of four methods:
- Serial; using a USB to RS-485 (for RS-485 radios) or a USB to RS-232 (for RS-232 radios) converter cable.
- Modbus TCP; using an Ethernet connection to an Ethernet radio master.
- Serial DXM; using a USB cable to a DXM Controller to access a MultiHop master radio.
- TCP DXM; using an Ethernet connection to a DXM Controller to access a MultiHop master radio.

For MultiHop DX80DR9* models, Banner recommends using BWA-UCT-900, an RS-485 to USB adapter cable with a wall plug that can power your 900 MHz 1 Watt MultiHop radio while you configure it. The adapter cable is not required when connecting to a DXM Controller.

Download the most recent software revision from the Wireless Reference Library on Banner Engineering’s website: www.bannerengineering.com.

Modbus Register Table

<table>
<thead>
<tr>
<th>Register (4xxxx)</th>
<th>Input #</th>
<th>Input Type</th>
<th>Units</th>
<th>I/O Range</th>
<th>Holding Register Representation</th>
<th>Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min, Max.</td>
<td>Min (Dec.) Max (Dec.)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Discrete IN 1</td>
<td>-</td>
<td>0 1</td>
<td>0 1</td>
<td>Pin 3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Analog IN 2</td>
<td>mA</td>
<td>0 20.0</td>
<td>65535</td>
<td></td>
</tr>
</tbody>
</table>

Modbus Addressing Convention

All Modbus addresses refer to Modbus holding registers. When writing your own Modbus scripts, use the appropriate commands for interfacing to holding registers. Parameter description headings refer to addresses in the range of 40000 as is customary with Modbus convention.

Modbus Register Configuration

Change the factory default settings for the inputs, outputs, and device operations using the device Modbus registers. To change parameters, set the data radio network to Modbus mode and assign the data radio a valid Modbus slave ID.

Generic input or output parameters are grouped together based on the device input or output number: input 1, input 2, output 1 etc. Operation type specific parameters (discrete, counter, analog 4 to 20 mA) are grouped together based on the I/O type number: analog 1, analog 2, counter 1, etc. Not all inputs or outputs may be available for all models. To determine which specific I/O is available on your model, refer to the Modbus Input/Output Register Maps listed in the device’s datasheet. For more information about registers, refer to the MultiHop Product Instruction Manual (p/n 151317).

Factory Default Configuration

Discrete Inputs (PNP)

<table>
<thead>
<tr>
<th>Enable</th>
<th>Sample</th>
<th>Boost Enable</th>
<th>Boost Warmup</th>
<th>Boost Voltage</th>
<th>Enabled Input Read</th>
<th>NPN/PNP</th>
<th>Sample High</th>
<th>Sample Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>40 ms</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>PNP</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Analog Inputs

<table>
<thead>
<tr>
<th>Enable</th>
<th>Sample</th>
<th>Boost Enable</th>
<th>Boost Warmup</th>
<th>Boost Voltage</th>
<th>Enabled Input Read</th>
<th>Analog Max</th>
<th>Analog Min</th>
<th>Enable Fullscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>1 sec</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>20000</td>
<td>0</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>
Discrete Outputs

<table>
<thead>
<tr>
<th>Enable</th>
<th>Analog Max</th>
<th>Analog Min</th>
<th>Enable Fullscale</th>
<th>Hold Last State Enable</th>
<th>Default Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>20000</td>
<td>0</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Analog Outputs

<table>
<thead>
<tr>
<th>Enable</th>
<th>Analog Max</th>
<th>Analog Min</th>
<th>Enable Fullscale</th>
<th>Hold Last State Enable</th>
<th>Default Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>20000</td>
<td>0</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Specifications

MultiHop Radio Specifications

- **Radio Range**
 - 900 MHz, 1 Watt: Up to 9.6 km (6 miles)
 - 2.4 GHz, 65 mW: Up to 3.2 km (2 miles)

- **Antenna Minimum Separation Distance**
 - 900 MHz, 150 mW: 2 m (6 ft)
 - 900 MHz, 1 Watt: 4.57 m (15 ft)
 - 2.4 GHz, 65 mW: 0.3 m (1 ft)

- **Radio Transmit Power**
 - 900 MHz: 30 dBm (1 W) conducted, less than or equal to 20 dBm (100 mW) EIRP
 - 2.4 GHz, 65 mW: Up to 3.2 km (2 miles)

- **Radiated Immunity**
 - 10 V/m (EN 61000-4-3)

- **Temperature Range**
 - –40 °C to +85 °C (–40 °F to +185 °F)

- **Accuracy**
 - 0.1% of full scale +0.01% per °C

- **Sample Rate**
 - 40 milliseconds

- **Interface**
 - One red/green LED
 - One push button

- **Discrete Inputs**
 - Rating: 3 mA max current at 30 V DC
 - Sample Rate: 45 milliseconds
 - ON Condition: Greater than 8 V
 - OFF Condition: Less than 5 V

- **Discrete Output ReEnable Condition**
 - Less than 2 V

- **Analog Outputs**
 - Rating: 24 mA
 - Update Rate: 125 milliseconds
 - Accuracy: 0.1% of full scale +0.01% per °C
 - Resolution: 12-bit

- **Discrete Output Rating (PnP)**
 - 100 mA max current at 30 V DC
 - ON-State Saturation: Less than 3 V at 100 mA
 - OFF-state Leakage: Less than 10 μA

- **Discrete Output ON Condition**
 - Supply minus 2 V

- **Operating Environment**
 - –40 °C to +85 °C (–40 °F to +185 °F)
 - 95% maximum relative humidity (non-condensing)
 - Radiated Immunity: 10 V/m (EN 61000-4-3)

HB2 Board Module Specifications

- **Supply Voltage**
 - 10 V DC to 30 V DC

- **Interface**
 - RS-232

- **Discrete Inputs**
 - Rating: 5 mA max current at 30 V DC
 - Sample Rate: 40 milliseconds
 - ON Condition: Greater than 8 V
 - OFF Condition: Less than 5 V

- **Discrete Output**
 - Rating: 24 mA
 - Update Rate: 125 milliseconds
 - Accuracy: 0.1% of full scale +0.01% per °C
 - Resolution: 12-bit

- **Analog Inputs**
 - Rating: 24 mA
 - Impedance: Approximately 100 Ohms
 - To verify the analog input's impedance, use an Ohm meter to measure the resistance between the analog input terminal (AIx) and the ground (GND) terminal.
 - Sample Rate: 1 second
 - Accuracy: 0.1% of full scale +0.01% per °C

- **Sampling Rate**
 - 1 second

- **Sample Rate**
 - 40 milliseconds

- **Input Resolution**
 - 12-bit

- **Input Accuracy**
 - 0.1% of full scale +0.01% per °C

- **Input Impedance**
 - Approximately 100 Ohms

- **Operating Environment**
 - –40 °C to +85 °C (–40 °F to +185 °F)
 - 95% maximum relative humidity (non-condensing)
 - Radiated Immunity: 10 V/m (EN 61000-4-3)

MultiHop Board Communication Specifications

- **Communication Hardware (MultiHop Board Mode, RS-485)**
 - Interface: 2-wire half-duplex RS-485
 - Bit rates: 9.6, 19.2, 38.4, and 57.6 kbps via DIP switches: 1200, 2400, 57.6 kbps
 - 115.2 kbps via the MultiHop Configuration Software
 - Data format: 8 data bits, no parity, 1 stop bit

- **Radio Packet Size (MultiHop)**
 - 900 MHz: 175 bytes (55 Modbus registers)
 - 2.4 GHz: 75 bytes (37 Modbus registers)

- **Radio Intercarrier Timing (MultiHop)**
 - 3.5 milliseconds

1. Radio range is with the 2 dB antenna that ships with the product. High-gain antennas are available, but the range depends on the environment and line of sight. Always verify your wireless network's range by performing a Site Survey.

2. For European applications, power this device from a Limited Power Source as defined in EN 60950-1.

3. Operating the devices at the maximum operating conditions for extended periods can shorten the life of the devices.
MultiHop M-HBx and Performance PBx Models Mounted on the Base

Figure 5. Most MultiHop M-HBx and Performance PBx models ship from the factory mounted on a plastic base.

Accessories for the Board Models

- DIN rail clip, black plastic

Warnings

Install and properly ground a qualified surge suppressor when installing a remote antenna system. Remote antenna configurations installed without surge suppressors invalidate the manufacturer’s warranty. Keep the ground wire as short as possible and make all ground connections to a single-point ground system to ensure no ground loops are created. No surge suppressor can absorb all lightning strikes; do not touch the Sure Cross® device or any equipment connected to the Sure Cross device during a thunderstorm.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. This warranty does not cover damage or liability for misuse, abuse, or improper operation or installation of the product. Any misuse, abuse, or improper operation or installation of the product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change: Banner reserves the right to modify product specifications or update documentation at any time. Specifications and product information in English supersede any that is provided in any other language. For the most recent version of any documentation, refer to: www.bannerengineering.com.

For patent information, see www.bannerengineering.com/patents.

Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper operation or installation of the Banner product.

This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement.

Notas Adicionales

Información México: La operación de este equipo está sujeta a las siguientes dos condiciones: 1) es posible que este equipo o dispositivo no cause interferencia perjudicial y 2) este equipo debe aceptar cualquier interferencia, incluyendo la que pueda causar su operación no deseada.

Banner es una marca registrada de Banner Engineering Corp. y podrán ser utilizadas de manera indistinta para referirse al fabricante. “Este equipo ha sido diseñado para operar con las antenas tipo Omnidireccional para una ganancia máxima de antena de 6 dBd y Yagi para una ganancia máxima de antena de 10 dBd que en seguida se enlistan. También se incluyen aquellas con aprobación ATEx tipo Omnidireccional siempre que no excedan una ganancia máxima de antena de 6 dBd. El uso con este equipo de antenas no incluidas en esta lista o que tengan una ganancia mayor que 6 dBd en tipo omnidireccional y 10 dBd en tipo Yagi, quedan prohibidas. La impedancia requerida de la antena es de 50 ohms.”

P/N 156853 Rev. 1 www.bannerengineering.com - Tel: + 1 888 373 6767
Antenas SMA

<table>
<thead>
<tr>
<th>Model</th>
<th>Antena, Omni 902-928 MHz, 2 dBi, junta de caucho, RP-SMA Macho</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJ02C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(BNJ02CA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Antena, Omni 902-928 MHz, 5 dBi, junta de caucho, RP-SMA Macho</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJ05C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(BNJ05CA)</td>
</tr>
</tbody>
</table>

Antenas Tipo-N

<table>
<thead>
<tr>
<th>Model</th>
<th>Antena, Omni 902-928 MHz, 6 dBi, fibra de vidrio, 1800mm, N Hembra</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJ06A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(BNJ06CA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Antena, Yagi, 900 MHz, 10 dBi, N Hembra</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJ10A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(BNJ10CA)</td>
</tr>
</tbody>
</table>

Mexican Importer

Banner Engineering de México, S. de R.L. de C.V.
David Alfaro Siqueiros 103 Piso 2 Valle oriente
San Pedro Garza García Nuevo León, C. P. 66269
81 8363.2714

© Banner Engineering Corp. All rights reserved