

Cabinet Condition Monitoring

Cabinet Condition Monitoring – Why?

- 설치 된 구성요소(전원 캐비닛, 제어 판넬 등)에 중점
- 환경 변수들은 시스템과 기계의 성능과 가용성에 영향을 미침.
- 환경 변수들은 노력에 위해 변경 할 수 있음(에어컨 설치, 설치장소 변경)

환경 변수 측정의 목적

- 성능 향상
- 연장된 서비스 수명
- 예상치 못한 다운타임 감소
- 예측 유지보수

목표는 계획되지 않은 공장/기계 가동 중지 시간을 줄여 가용성을 높이는 것입니다.

제어 캐비닛의 Condition 모니터링

제어 캐비닛은 아래의 환경 변수에 중점 운영

- 기계 수준의 외부 영향
 - 온도, 습도, 충격
 - EMC
 - 기물 파손, 무단 사용
- 더 높아진 밀접도(캐비닛 사이즈 소형화)
 - 전력 손실 증가
 - 추가 배선
 - 높은 밀접도로 인한 공기흐름 악화

미래 기술은 제어 캐비닛의 보호 기능에 대한 요구를 증가시킵니다.

제어 캐비닛의 Condition 모니터링 요구사항

쉬운 설치

다수의 환경 변수

간단한 장착

간단한 설정

효율적인 비용

신뢰성

최소 공간 요구

변조 방지

Cabinet Condition Monitoring의 중요 측정 포인트

습도 변화

도어 열림 상태

Airflow

진동과 충격

온도 변화

공기 흐름

Cabinet Condition Monitoring – 환경 변화

온도:

- 정확도 및 기능에 대한 영향(경감)
- 잦은 온도 변화로 노화 촉진(전자/기계)

습도:

- 온도 변화에 따른 결로 현상
- 습도가 높으면 에어컨 시스템에 결함이 있음을 나 타낼 수 있습니다.

Cabinet Condition Monitoring – 환경 변화

전원 스위치 On/Off:

- 전압 또는 전류 피크는 구성 요소를 파괴 가능.
- 전자/기계 부품 노화 영향

도어 열림:

- 잦은 개봉은 습기, 먼지, 부식성 가스의 유입 용이.
- 문 열림 -> 보호 효과가 완전히 제거 됨.

Cabinet Condition Monitoring – 환경 변화

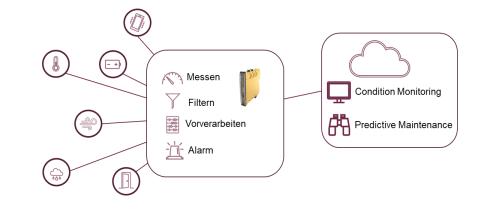
공기 흐름:

- 기류 없음 -> 방열량 대폭 감소
- 내장된 구성 요소 및 케이블 덕트는 대상 공기 흐름을 방지 가능.

- 지속적인 진동 하중은 접점 및 고정점에 부정적인 영향.
- 강한 기계적인 부하가 고장 발생 가능

Cabinet Condition Monitoring – Access 모니터링

- 정확한 레이저 거리 측정으로 도어까지의 거리 모니터링
 - 작은 변화도 기록
 - 조작에 대한 보안성 강화
- 의도하지 않은 도어 열림 모니터링
 - 유지보수 이후 모니터링
 - 잠금 기구의 기계적인 결함
 - 무단 접근 모니터링
 - 도난
 - 무단 조작
 - 파손



Cabinet Condition Monitoring – 데이터 수집 및 전처리

- Data recording 만은 Condition Monitoring이 아님
- IM18-CCM
 - 측정값 캡쳐
 - 필터링 이상 발생
 - 타임스탬프, 계산
 - 알람 (릴레이, 티켓 발생)
- Cloud Services
 - ・ 상태 모니터링 Condition Monitoring
 - 예지 보전
 - 자산 관리

IM18-CCM 특징

3개의 통합 센서와 쉬운 장착

- 통합 센서를 사용하여 온도, 습도 및 제어 캐비닛 도어로 부터의 거리를 모니터링
- 장치는 DIN 레일에 장착 가능
- 24-VDC 전압 공급 만으로 모든 기능 수행
- 폭이 18mm에 불과 하여 IM18-CCM은 좁은 공간에서도 사용 가능
- 센서를 설치하고 배선하는 복잡한 프로세스가 없으므로 관련 추가 비용 절감
- 센서는 장치의 앞면에 위치 함

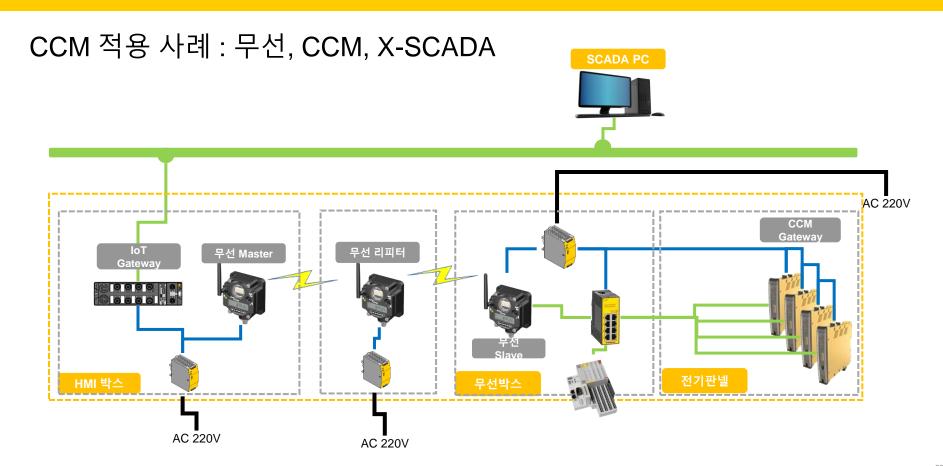
IM18-CCM 특징

오픈 소스 (Debian) Linux Operating System

- M18-CCM50의 기본 버전에는 통합 센서, 2개의 이더넷 인터페이스 및 1개의 Modbus RTU(마스터) 인터페이스 장착
- 운영 체제에는 이러한 인터페이스를 작동하고 측정된 값을 전송하는 데 필요한 드라이버 포함
- Linux 운영 체제를 사용하면 회사별 운영 프런트 엔드, 측정 데이터를 사전 처리하기 위한 애플리케이션 또는 클라우드 시스템에 연결하기 위한 애플리케이션과 같은 고객별 애플리케이션을 설치 가능

개방형 Linux 시스템으로 유연성 향상

IM18-CCM 특징


IM18-CCM51: 전류 측정 추가 모듈

- IM18-CCM50에 직접 장착 및 원활한 통합전원 공급 및 데이터 교환은 후면 전원 레일 연결로 전송 (별도 배선 없음).
- 최대 12개의 채널을 동시에 연결(채널의 직렬 쿼리).
- 측정 범위 30A, 80A, 100A, 300A 또는 600A 모든 조합 가능
- 다양한 케이블 직경을 위한 TDK ClampOn CCT 제품 시리즈 전류 측정 센서. 전원선을 분리하지 않고 장착 가능
- 전기 드라이브, 펌프, 기어 또는 팬의 확장된 상태 모니터링을 위한 완벽한 솔루션

Current measurements for the extended condition monitoring

